4954

Real-time Volumetric Haptic and Visual Burrhole Simulation

Eric Acosta, Alan Liu
National Capital Area Medical Simulation Center, Uniformed Services University, Bethesda, MD
IEEE Virtual Reality Conference, 2007. VR ’07
BibTeX

Download Download (PDF)   View View   Source Source   

1895

views

This paper describes real-time volumetric haptic and visual algorithms developed to simulate burrhole creation for a virtual reality-based craniotomy surgical simulator. A modified Voxmap point-shell algorithm (McNeely et al., 1999), (Renz et al., 2001) is created to simulate haptic interactions between bone cutting tools and voxel-based bone. New surface boundary detection and force feedback calculation methods help reduce "force discontinuities" of the original Voxmap point-shell algorithm. To maintain stable haptic update rates, new forces are calculated outside the haptics rendering loop. A multi-rate haptic solution (Cavusoglu and Tendick, 2000) is used to introduce calculated forces into the haptics loop and to interpolate forces between updates. A bone erosion method is also created to simulate bone drilling capabilities of different tools. 3D texture-based volume rendering is used to display the bone and to visually remove bone material due to drilling in real-time. Volumetric shading is computed by the GPU of the video card. The algorithms described make it possible to simulate several tools typically used for a craniotomy. Realistic 3D models are also created from real surgical tools and controlled by the haptic device
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org