Parallel Volume Rendering for Large Scientific Data

Thomas Fogal
University of New Hampshire
University of New Hampshire, 2011



   author={Fogal, T.},


   school={University of New Hampshire}


Download Download (PDF)   View View   Source Source   



Data sets of immense size are regularly generated by large scale computing resources. Even among more traditional methods for acquisition of volume data, such as MRI and CT scanners, data which is too large to be effectively visualized on standard workstations is now commonplace. One solution to this problem is to employ a ‘visualization cluster,’ a small to medium scale cluster dedicated to performing visualization and analysis of massive data sets generated on larger scale supercomputers. These clusters are designed to fulfill a different need than traditional supercomputers, and therefore their design mandates different hardware choices, such as increased memory, and more recently, graphics processing units (GPUs). While there has been much previous work on distributed memory visualization as well as GPU visualization, there is a relative dearth of algorithms which effectively use GPUs at a large scale in a distributed memory environment. In this work, we study a common visualization technique in a GPU-accelerated, distributed memory setting, and present performance characteristics when scaling to extremely large data sets.
No votes yet.
Please wait...

* * *

* * *

Featured events

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: