2265

Posts

Dec, 18

A Cross-Input Adaptive Framework for GPU Programs Optimization

Recent years have seen a trend in using graphic processing units (GPU) as accelerators for general-purpose computing. The inexpensive, single-chip, massively parallel architecture of GPU has evidentially brought factors of speedup to many numerical applications. However, the development of a high-quality GPU application is challenging, due to the large optimization space and complex unpredictable effects […]
Dec, 17

Fast Software AES Encryption

This paper presents new software speed records for AES-128 encryption for architectures at both ends of the performance spectrum. On the one side we target the low-end 8-bit AVR microcontrollers and 32-bit ARM microprocessors, while on the other side of the spectrum we consider the high-performing Cell broadband engine and NVIDIA graphics processing units (GPUs). […]
Dec, 17

A New Parallel Method of Smith-Waterman Algorithm on a Heterogeneous Platform

Smith-Waterman algorithm is a classic dynamic programming algorithm to solve the problem of biological sequence alignment. However, with the rapid increment of the number of DNA and protein sequences, the originally sequential algorithm is very time consuming due to there existing the same computing task computed repeatedly on large-scale data. Today’s GPU (graphics processor unit) […]
Dec, 17

Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units

We report a parallel Monte Carlo algorithm accelerated by graphics processing units (GPU) for modeling time-resolved photon migration in arbitrary 3D turbid media. By taking advantage of the massively parallel threads and low-memory latency, this algorithm allows many photons to be simulated simultaneously in a GPU. To further improve the computational efficiency, we explored two […]
Dec, 17

GPU Accelerated RNA Folding Algorithm

Many bioinformatics studies require the analysis of RNA or DNA structures. More specifically, extensive work is done to elaborate efficient algorithms able to predict the 2-D folding structures of RNA or DNA sequences. However, the high computational complexity of the algorithms, combined with the rapid increase of genomic data, triggers the need of faster methods. […]
Dec, 17

GPU Parallelization of Algebraic Dynamic Programming

Algebraic Dynamic Programming (ADP) is a framework to encode a broad range of optimization problems, including common bioinformatics problems like RNA folding or pairwise sequence alignment. The ADP compiler translates such ADP programs into C. As all the ADP problems have similar data dependencies in the dynamic programming tables, a generic parallelization is possible. We […]
Dec, 17

GPU-accelerated differential evolutionary Markov Chain Monte Carlo method for multi-objective optimization over continuous space

In this paper, the attractive features of evolutionary algorithm and Markov Chain Monte Carlo are combined into a new Differential Evolutionary Markov Chain Monte Carlo (DE-MCMC) method for multi-objective optimization problems with continuous variables. The DE-MCMC evolves a population of Markov chains through differential evolution (DE) toward a diversified set of solutions at the Pareto […]
Dec, 17

GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues

As the most accurate model for simulating light propagation in heterogeneous tissues, Monte Carlo (MC) method has been widely used in the field of optical molecular imaging. However, MC method is time-consuming due to the calculations of a large number of photons propagation in tissues. The structural complexity of the heterogeneous tissues further increases the […]
Dec, 17

Accelerating Correlated Quantum Chemistry Calculations Using Graphical Processing Units

Graphical processing units are now being used with dramatic effect to accelerate quantum chemistry applications. The authors give a brief introduction to electronic structure methods and describe their efforts to accelerate a correlated quantum chemistry code. They propose and analyze two new tools for accelerating matrix-multiplications where single-precision accuracy is insuffcient.
Dec, 17

Programming massively parallel processors : A Hands – on approach

Multi-core processors are no longer the future of computing-they are the present day reality. A typical mass-produced CPU features multiple processor cores, while a GPU (Graphics Processing Unit) may have hundreds or even thousands of cores. With the rise of multi-core architectures has come the need to teach advanced programmers a new and essential skill: […]
Dec, 17

A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software

During the past few years, graphics processing units (GPUs) have become extremely popular in the high performance computing community. In this study, we present an implementation of an acceleration engine for the solvent-solvent interaction evaluation of molecular dynamics simulations. By careful optimization of the algorithm speed-ups up to a factor of 54 (single-precision GPU vs. […]
Dec, 17

Molecular Dynamics on a Grand Scale

To explore progressively larger biomolecular systems, methods to model explicit solvent cheaply are required. In this work, the use of Graphics Processing Units, found in commodity video cards, for solving the constraints, calculating the non-bonded forces and generating the pair list in the case of the fully constrained three site SPC water model is investigated. […]

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us: