10091

Methods for Optimizing OpenCL Applications on Heterogeneous Multicore Architectures

Slo-Li Chu, Chih-Chieh Hsiao
Department of Information and Computer Engineering, Chung Yuan Christian University, Chung Li, 32023, Taiwan
Applied Mathematics & Information Sciences, Volume 7, No. 6, 2549-2562, 2013
@article{chu2013methods,

   title={Methods for Optimizing OpenCL Applications on Heterogeneous Multicore Architectures},

   author={Chu, Slo-Li and Hsiao, Chih-Chieh},

   journal={Appl. Math},

   volume={7},

   number={6},

   pages={2549–2562},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

351

views

Heterogeneous multicore architectures with CPU and add-on GPUs or streaming processors are now widely used in computer systems. These GPUs provide substantially more computation capability and memory bandwidth compared to traditional multi-cores. Also, because they are highly programmable, they provide the computational performance needed for realistic graphics rendering. Applications with general computations can also be leveraged onto these GPUs. This study discusses the architectures of these highly efficient GPUs and applies a unified programming standard called OpenCL to fully utilize their capabilities. Despite their great potential, applications of these GPUs are challenging because of their diverse underlying architectural characteristics. In this study, several optimizing techniques are applied on OpenCL-compatible heterogeneous multicore architectures to achieve thread-level and data-level parallelisms. The architectural implications of these techniques are discussed. Finally, optimization principles for these architectures will be are proposed. The experimental reveal average speedups of 24 and 430 for non-optimized and optimized kernels, respectively.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

124 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1180 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: