10101

Parallel and Concurrent Programming in Haskell: Techniques for Multicore and Multithreaded Programming

Simon Marlow
GHC
O’Reilly Media, Inc., 2013
@book{marlow2013parallel,

   title={Parallel and Concurrent Programming in Haskell: Techniques for Multicore and Multithreaded Programming},

   author={Marlow, Simon},

   year={2013},

   publisher={" O’Reilly Media, Inc."}

}

Download Download (PDF)   View View   Source Source   

962

views

This book covers the breadth of Haskell’s diverse selection of programming APIs for concurrent and parallel programming. It is split into two parts. The first part, on parallel programming, covers the techniques for using multiple processors to speed up CPU-intensive computations, including methods for using parallelism in both idiomatic Haskell and numerical array-based algorithms, and for running computations on a GPU. The second part, on concurrent programming, covers techniques for using multiple threads, including overlapping multiple I/O operations, building concurrent network servers, and distributed programming across multiple machines.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

167 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1275 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: