Real-time 3D semi-local surface patch extraction using GPGPU

Sergio Orts-Escolano, Vicente Morell, Jose Garcia-Rodriguez, Miguel Cazorla, Robert B. Fisher
Computer Technology Department, University of Alicante
Real-time Image Processing, 2013

   title={Real-time 3D semi-local surface patch extraction using GPGPU},

   author={Orts-Escolano, Sergio and Morell, Vicente and Garcia-Rodriguez, Jose and Cazorla, Miguel and Fisher, Robert B},



Download Download (PDF)   View View   Source Source   



Feature vectors can be anything from simple surface normals to more complex feature descriptors. Feature extraction is important in order to solve various computer vision problems: e.g. registration, object recognition and scene understanding. Most of these techniques cannot be computed online due to their complexity and the context where they are applied. Therefore computing these features in real-time for many points in the scene is impossible. In this work a hardware-based implementation of 3D feature extraction and 3D object recognition is proposed in order to accelerate these methods and therefore the entire pipeline of RGBD based computer vision systems where such features are typically used. The use of a GPU as a General Purpose processor (GPGPU) can achieve considerable speed-ups compared with a CPU implementation. In this work advantageous results are obtained using the GPU to accelerate the computation of a 3D descriptor based on the calculation of 3D semilocal surface patches of partial views. This allows descriptor computation at several points of a scene in realtime. Benefits of the accelerated descriptor have been demonstrated in object recognition tasks. Source code will be made publicly available as contribution to the Open Source Point Cloud Library (PCL).
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1665 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: