10547

Parallel Motion Estimation Implementation for Different Block Matching Algorithms onto GPGPU

Eduarda Monteiro, Marilena Maule, Felipe Sampaio, Claudio Diniz, Bruno Zatt, Sergio Bampi
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
XXVII SIM – South Symposium on Microelectronics, 2012
@article{monteiro2012parallel,

   title={PARALLEL MOTION ESTIMATION IMPLEMENTATION FOR DIFFERENT BLOCK MATCHING ALGORITHMS ONTO GPGPU},

   author={Monteiro, Eduarda and Maule, Marilena and Sampaio, Felipe and Diniz, Cl{‘a}udio and Zatt, Bruno and Bampi, Sergio},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

783

views

This work presents an efficient method to map Motion Estimation (ME) algorithms onto General Purpose Graphic Processing Unit (GPGPU) architectures using CUDA programming model. Our method jointly exploits the massive parallelism available in current GPGPU devices and the parallelization potential of ME algorithms: Full Search (FS) and Diamond Search (DS). Our main goal is to evaluate the feasibility of achieving real-time high-definition video encoding performance running on GPUs. For comparison reasons, multi-core parallel and distributed versions of these algorithms were developed using OpenMP and MPI (Message Passing Interface) libraries, respectively. The CUDA-based solutions achieve the highest speed-up in comparison with OpenMP and MPI versions for both algorithms and, when compared to the state-of-the-art, our FS and DS solutions reach up to 18x and 11x speed-up, respectively.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1472623288
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1472623288
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => 7+6CaDoGkGhNb/nzTHpqiSzZmIA=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1974 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: