BenchFriend: Correlating the Performance of GPU Benchmarks

Shuai Che, Kevin Skadron
AMD Research
International Journal of High Performance Computing Applications (IJHPCA), 2013

   title={BenchFriend: Correlating the Performance of GPU Benchmarks},

   author={Che, Shuai and Skadron, Kevin},



Download Download (PDF)   View View   Source Source   



Graphics processing units (GPUs) have become an important platform for general-purpose computing, thanks to their high parallel throughput and high memory bandwidth. GPUs present significantly different architectures from CPUs and require specific mappings and optimizations to achieve high performance. This makes GPU workloads demonstrate application characteristics different from those of CPU workloads. It is critical for researchers to understand the first-order metrics that most influence GPU performance and scalability. Furthermore, methodologies and associated tools are needed to analyze and predict the performance of GPU applications and help guide users’ purchasing decisions. In this work, we study an approach of predicting the performance of GPU applications by correlating them to existing workloads. One tenet of benchmark design, also a motivation of this paper, is that users should be given capabilities of leveraging standard workloads to infer the performance of applications of their interest. We first identify a set of important GPU application characteristics and then use them to predict performance of an arbitrary application by determining its most similar proxy benchmarks. We demonstrate the prediction methodology and conduct predictions with benchmarks from different suites to achieve better workload coverage. The experimental results show that we are able to achieve satisfactory performance predictions, although errors are higher for outlier applications. Finally, we discuss several considerations for systematically constructing future benchmark suites.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1584 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

299 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: