GooFit: A library for massively parallelising maximum-likelihood fits

R. Andreassen, B. T. Meadows, M. de Silva, M. D. Sokoloff, K. Tomko
University of Cincinnati, Physics Department, ML0011, Cincinnati OH 45221-0011, USA
arXiv:1311.1753 [cs.DC], (7 Nov 2013)

   author={Andreassen}, R. and {Meadows}, B.~T. and {de Silva}, M. and {Sokoloff}, M.~D. and {Tomko}, K.},

   title={"{GooFit: A library for massively parallelising maximum-likelihood fits}"},

   journal={ArXiv e-prints},




   keywords={Computer Science – Distributed, Parallel, and Cluster Computing, Computer Science – Mathematical Software},




   adsnote={Provided by the SAO/NASA Astrophysics Data System}


Download Download (PDF)   View View   Source Source   Source codes Source codes




Fitting complicated models to large datasets is a bottleneck of many analyses. We present GooFit, a library and tool for constructing arbitrarily-complex probability density functions (PDFs) to be evaluated on nVidia GPUs or on multicore CPUs using OpenMP. The massive parallelisation of dividing up event calculations between hundreds of processors can achieve speedups of factors 200-300 in real-world problems.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

238 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1445 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: