11079

Job Parallelism using Graphical Processing Unit Individual Multi-Processors and Localised Memory

D.P. Playne, K.A. Hawick
Computer Science, Massey University, North Shore 102-904, Auckland, New Zealand
The 2013 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’13), 2013
@article{playne2013job,

   title={Job Parallelism using Graphical Processing Unit Individual Multi-Processors and Localised Memory},

   author={Playne, DP and Hawick, KA},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

199

views

Graphical Processing Units(GPUs) are usually programmed to provide data-parallel acceleration to a host processor. Modern GPUs typically have an internal multi-processor (MP) structure that can be exploited in an unusual way to offer semi-independent task parallelism providing the MPs can operate within their own localised memory and apply data-parallelism to their own problem subset. We describe a combined simulation and statistical analysis application using component labelling and benchmark it on a range of modern GPU and CPU devices with various numbers of cores. As well as demonstrating a high degree of job parallelism and throughput we find a typical GPU MP outperforms a conventional CPU core.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1189 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: