High performance comparison-based sorting algorithm on many-core GPUs

Xiaochun Ye, Dongrui Fan, Wei Lin, Nan Yuan, Paolo Ienne
Key Laboratory of Computer System and Architecture, Institute of Computing Technology (ICT), Chinese Academy of Sciences, Beijing, China
IEEE International Symposium on Parallel & Distributed Processing (IPDPS), 2010

   title={High performance comparison-based sorting algorithm on many-core GPUs},

   author={Ye, X. and Fan, D. and Lin, W. and Yuan, N. and Ienne, P.},

   booktitle={Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on},





Download Download (PDF)   View View   Source Source   



Sorting is a kernel algorithm for a wide range of applications. In this paper, we present a new algorithm, GPU-Warpsort, to perform comparison-based parallel sort on Graphics Processing Units (GPUs). It mainly consists of a bitonic sort followed by a merge sort. Our algorithm achieves high performance by efficiently mapping the sorting tasks to GPU architectures. Firstly, we take advantage of the synchronous execution of threads in a warp to eliminate the barriers in bitonic sorting network. We also provide sufficient homogeneous parallel operations for all the threads within a warp to avoid branch divergence. Furthermore, we implement the merge sort efficiently by assigning each warp independent pairs of sequences to be merged and by exploiting totally coalesced global memory accesses to eliminate the bandwidth bottleneck. Our experimental results indicate that GPU-Warpsort works well on different kinds of input distributions, and it achieves up to 30% higher performance than previous optimized comparison-based GPU sorting algorithm on input sequences with millions of elements.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: