Parallel GPU Implementation of Iterated Local Search for the Travelling Salesman Problem

Audrey Delevacq, Pierre Delisle, Michael Krajecki
CReSTIC, Universite de Reims Champagne-Ardenne, Reims, France
Learning and Intelligent OptimizatioN conference (LION), 2012

   title={Parallel GPU Implementation of Iterated Local Search for the Travelling Salesman Problem},

   author={Del{‘e}vacq, A. and Delisle, P. and Krajecki, M.},



Download Download (PDF)   View View   Source Source   
The purpose of this paper is to propose effective parallelization strategies for the Iterated Local Search (ILS) metaheuristic on Graphics Processing Units (GPU). We consider the decomposition of the 3-opt Local Search procedure on the GPU processing hardware and memory structure. Two resulting algorithms are evaluated and compared on both speedup and solution quality on a state-of-the-art Fermi GPU architecture. We report speedups of up to 6.02 with solution quality similar to the original sequential implementation on instances of the Travelling Salesman Problem ranging from 100 to 3038 cities.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at

Registered users can now run their OpenCL application at We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to will be treated according to our Privacy Policy

HGPU group © 2010-2014

All rights belong to the respective authors

Contact us: