Parallel GPU Implementation of Iterated Local Search for the Travelling Salesman Problem

Audrey Delevacq, Pierre Delisle, Michael Krajecki
CReSTIC, Universite de Reims Champagne-Ardenne, Reims, France
Learning and Intelligent OptimizatioN conference (LION), 2012

   title={Parallel GPU Implementation of Iterated Local Search for the Travelling Salesman Problem},

   author={Del{‘e}vacq, A. and Delisle, P. and Krajecki, M.},



Download Download (PDF)   View View   Source Source   



The purpose of this paper is to propose effective parallelization strategies for the Iterated Local Search (ILS) metaheuristic on Graphics Processing Units (GPU). We consider the decomposition of the 3-opt Local Search procedure on the GPU processing hardware and memory structure. Two resulting algorithms are evaluated and compared on both speedup and solution quality on a state-of-the-art Fermi GPU architecture. We report speedups of up to 6.02 with solution quality similar to the original sequential implementation on instances of the Travelling Salesman Problem ranging from 100 to 3038 cities.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1512 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

261 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: