8203

On the Validation and Applications of a Parallel Flexible Multi-Body Dynamics Implementation

Daniel J. Melanz
University of Wisconsin – Madison
University of Wisconsin – Madison, 2012
@phdthesis{melanz2012validation,

   title={On the Validation and Applications of a Parallel Flexible Multi-body Dynamics Implementation},

   author={Melanz, D.J.},

   year={2012},

   school={UNIVERSITY OF WISCONSIN}

}

Download Download (PDF)   View View   Source Source   

317

views

This work discusses how a flexible body formalism, specifically, the Absolute Nodal Coordinate Formulation (ANCF), is combined with the Discrete Element Method (DEM) and the Newmark implicit integration method to address many-body dynamics problems; i.e., problems with hundreds of thousands of rigid and deformable bodies. DEM is used to model friction and contact between elements, while the Newmark implicit integration method allows constraints to be created between nodes and allows for large integration time steps. Since the computational effort associated with these problems is significant, the analytical framework is implemented to leverage the computational power available on the Graphical Processing Unit (GPU) cards. The developed code is validated against existing commercial and research finite element analysis software and its efficiency is compared against that of a serial implementation. Several applications are simulated to demonstrate the capabilities of the implementation.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

138 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1212 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: