8303

Multi2Sim: a simulation framework for CPU-GPU computing

Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, David Kaeli
Electrical and Computer Engineering Dept., Northeastern University, 360 Huntington Ave., Boston, MA 02115
21st international conference on Parallel architectures and compilation techniques (PACT ’12), 2012
@inproceedings{ubal2012multi2sim,

   title={Multi2Sim: a simulation framework for CPU-GPU computing},

   author={Ubal, R. and Jang, B. and Mistry, P. and Schaa, D. and Kaeli, D.},

   booktitle={Proceedings of the 21st international conference on Parallel architectures and compilation techniques},

   pages={335–344},

   year={2012},

   organization={ACM}

}

Download Download (PDF)   View View   Source Source   

801

views

Accurate simulation is essential for the proper design and evaluation of any computing platform. Upon the current move toward the CPU-GPU heterogeneous computing era, researchers need a simulation framework that can model both kinds of computing devices and their interaction. In this paper, we present Multi2Sim, an open-source, modular, and fully configurable toolset that enables ISA-level simulation of an x86 CPU and an AMD Evergreen GPU. Focusing on a model of the AMD Radeon 5870 GPU, we address program emulation correctness, as well as architectural simulation accuracy, using AMD’s OpenCL benchmark suite. Simulation capabilities are demonstrated with a preliminary architectural exploration study, and workload characterization examples. The project source code, benchmark packages, and a detailed user’s guide are publicly available at www.multi2sim.org.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

149 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1243 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: