MPC Toolbox with GPU Accelerated Optimization Algorithms

Nicolai Fog Gade-Nielsen, John Bagterp Jorgensen, Bernd Dammann
DTU Informatics, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
The 10th European Workshop on Advanced Control and Diagnosis (ACD 2012), 2012

   title={MPC Toolbox with GPU Accelerated Optimization Algorithms},

   author={Gade-Nielsen, N.F. and J{o}rgensen, J.B. and Dammann, B.},



Download Download (PDF)   View View   Source Source   



The introduction of Graphical Processing Units (GPUs) in scientific computing has shown great promise in many different fields. While GPUs are capable of very high floating point performance and memory bandwidth, its massively parallel architecture requires algorithms to be reimplemented to suit the different architecture. Interior point method can be used to solve convex optimization problems. These problems often arise in fields such as in Model Predictive Control (MPC), which may have real-time requirements for the solution time. This paper presents a case study in which we utilize GPUs for a Linear Programming Interior Point Method to solve a test case where a series of power plants must be controlled to minimize the cost of power production. We demonstrate that using GPUs for solving MPC problems can provide a speedup in solution time.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1580 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

293 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: