8710

Hybrid Ray Tracing and Path Tracing of Bezier Surfaces Using A Mixed Hierarchy

Rohit Nigam, P. J. Narayanan
Center for Visual Information Technology, IIIT-Hyderabad, India
8th Indian Conference on Vision, Graphics and Image Processing, 2012
@article{nigam2012hybrid,

   title={Hybrid Ray Tracing and Path Tracing of Bezier Surfaces Using A Mixed Hierarchy},

   author={Nigam, Rohit and Narayanan, P. J.},

   year={2012}

}

Download Download (PDF)   View View   Source Source   

538

views

We present a scheme for interactive ray tracing of Bezier bicubic patches using Newton iteration in this paper. We use a mixed hierarchy representation as the acceleration structure. This has a bounding volume hierarchy above the patches and a fixed depth subpatch tree below it. This helps reduce the number of ray-patch intersections that needs to be evaluated and provides good initialization for the iterative step, keeping the memory requirements low. We use Newton iteration on the generated list of ray patch intersections in parallel. Our method can exploit the cores of the CPU and the GPU with OpenMP on the CPU and CUDA on the GPU by sharing work between them according to their relative speeds. A data parallel framework is used throughout starting with a list of rays, which is transformed to a list of ray-patch intersections by traversal and then to intersections and a list of secondary rays by root finding. Shadow and reflection rays can be handled exactly in the same manner as a result. We also show how our method extends easily to generate soft shadows using area light sources and path tracing by tracing a large number of rays per pixel. We render a million pixel image of the Teapot model at 125 fps on a system with an Intel i7 920 and a Nvidia GTX580 for primary rays only and at about 65 fps with one pass of shadow and refection rays.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1220 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: