8936

The Dual-Path Execution Model for Efficient GPU Control Flow

Minsoo Rhu, Mattan Erez
Electrical and Computer Engineering Department, The University of Texas at Austin
19th IEEE International Symposium on High-Performance Computer Architecture (HPCA-19), 2013
@article{rhu2013dual,

   title={The Dual-Path Execution Model for Efficient GPU Control Flow},

   author={Rhu, Minsoo and Erez, Mattan},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

757

views

Current graphics processing units (GPUs) utilize the single instruction multiple thread (SIMT) execution model. With SIMT, a group of logical threads executes such that all threads in the group execute a single common instruction on a particular cycle. To enable control flow to diverge within the group of threads, GPUs partially serialize execution and follow a single control flow path at a time. The execution of the threads in the group that are not on the current path is masked. Most current GPUs rely on a hardware reconvergence stack to track the multiple concurrent paths and to choose a single path for execution. Control flow paths are pushed onto the stack when they diverge and are popped off of the stack to enable threads to reconverge and keep lane utilization high. The stack algorithm guarantees optimal reconvergence for applications with structured control flow as it traverses the structured control-flow tree depth first. The downside of using the reconvergence stack is that only a single path is followed, which does not maximize available parallelism, degrading performance in some cases. We propose a change to the stack hardware in which the execution of two different paths can be interleaved. While this is a fundamental change to the stack concept, we show how dualpath execution can be implemented with only modest changes to current hardware and that parallelism is increased without sacrificing optimal (structured) control-flow reconvergence. We perform a detailed evaluation of a set of benchmarks with divergent control flow and demonstrate that the dual-path stack architecture is much more robust compared to previous approaches for increasing path parallelism. Dual-path execution either matches the performance of the baseline single-path stack architecture or outperforms single-path execution by 14:9% on average and by over 30% in some cases.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1475305615
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1475305615
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => ebzdZF5WkfD0fX4bnjcj7Vh9u90=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

2006 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: