Parallel Sorting on the Heterogeneous AMD Fusion Accelerated Processing Unit

Michael Christopher Delorme
Department of Electrical and Computer Engineering, University of Toronto
University of Toronto, 2013

   title={Parallel Sorting on the Heterogeneous AMD Fusion Accelerated Processing Unit},

   author={Delorme, Michael Christopher},


   school={University of Toronto}


Download Download (PDF)   View View   Source Source   



We explore efficient parallel radix sort for the AMD Fusion Accelerated Processing Unit (APU). Two challenges arise: efficiently partitioning data between the CPU and GPU and the allocation of data in memory regions. Our coarse-grained implementation utilizes both the GPU and CPU by sharing data at the begining and end of the sort. Our fine-grained implementation utilizes the APU’s integrated memory system to share data throughout the sort. Both these implementations outperform the current state of the art GPU radix sort from NVIDIA. We therefore demonstrate that the CPU can be efficiently used to speed up radix sort on the APU. Our fine-grained implementation slightly outperforms our coarse-grained implementation. This demonstrates the benefit of the APU’s integrated architecture. This performance benefit is hindered by limitations in the APU’s architecture and programming model. We believe that the performance benefits will increase once these limitations are addressed in future generations of the APU.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1662 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

337 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: