Real-time Stereo Vision: Optimizing Semi-Global Matching

Matthias Michael, Jan Salmen, Johannes Stallkamp, Marc Schlipsing
Institut fur Neuroinformatik, Ruhr-Universitat Bochum, 44780 Bochum, Germany
IEEE Intelligent Vehicles Symposium, 2013

   title={Real-time Stereo Vision: Optimizing Semi-Global Matching},

   author={Michael, Matthias and Salmen, Jan and Stallkamp, Johannes and Schlipsing, Marc},



Download Download (PDF)   View View   Source Source   



Semi-Global Matching (SGM) is arguably one of the most popular algorithms for real-time stereo vision. It is already employed in mass production vehicles today. Thinking of applications in intelligent vehicles (and fully autonomous vehicles in the long term), we aim at further improving SGM regarding its accuracy. In this study, we propose a straight-forward extension of the algorithm’s parametrization. We consider individual penalties for different path orientations, weighted integration of paths, and penalties depending on intensity gradients. In order to tune all parameters, we applied evolutionary optimization. For a more efficient offline optimization and evaluation, we implemented SGM on graphics hardware. We describe the implementation using CUDA in detail. For our experiments, we consider two publicly available datasets: the popular Middlebury benchmark as well as a synthetic sequence from the .enpeda. project. The proposed extensions significantly improve the performance of SGM. The number of incorrect disparities was reduced by up to 27.5% compared to the original approach, while the runtime was not increased.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

218 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1406 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: