Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer, Chita R. Das
The Pennsylvania State University, University Park, PA 16802
40th International Symposium on Computer Architecture (ISCA), 2013

   title={Orchestrated Scheduling and Prefetching for GPGPUs},

   author={Jog, Adwait and Kayiran, Onur and Mishra, Asit K and Kandemir, Mahmut T and Mutlu, Onur and Iyer, Ravishankar and Das, Chita R},



Download Download (PDF)   View View   Source Source   



In this paper, we present techniques that coordinate the thread scheduling and prefetching decisions in a General Purpose Graphics Processing Unit (GPGPU) architecture to better tolerate long memory latencies. We demonstrate that existing warp scheduling policies in GPGPU architectures are unable to effectively incorporate data prefetching. The main reason is that they schedule consecutive warps, which are likely to access nearby cache blocks and thus prefetch accurately for one another, back-to-back in consecutive cycles. This either 1) causes prefetches to be generated by a warp too close to the time their corresponding addresses are actually demanded by another warp, or 2) requires sophisticated prefetcher designs to correctly predict the addresses required by a future "far-ahead" warp while executing the current warp. We propose a new prefetch-aware warp scheduling policy that overcomes these problems. The key idea is to separate in time the scheduling of consecutive warps such that they are not executed back-to-back. We show that this policy not only enables a simple prefetcher to be effective in tolerating memory latencies but also improves memory bank parallelism, even when prefetching is not employed. Experimental evaluations across a diverse set of applications on a 30-core simulated GPGPU platform demonstrate that the prefetch-aware warp scheduler provides 25% and 7% average performance improvement over baselines that employ prefetching in conjunction with, respectively, the commonlyemployed round-robin scheduler or the recently-proposed two-level warp scheduler. Moreover, when prefetching is not employed, the prefetch-aware warp scheduler provides higher performance than both of these baseline schedulers as it better exploits memory bank parallelism.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

229 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1424 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: