9614

Parallel Asynchronous Modelization and Execution of Cholesky Algorithm using Petri Nets

Gustavo Wolfmann, Armando De Giusti
Laboratorio de Computacion, Fac. Cs. Exactas Fisicas y Naturales, Universidad Nacional de Cordoba, Cordoba – Argentina
The 2013 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA’13), 2013
@article{wolfmann2013parallel,

   title={Parallel Asynchronous Modelization and Execution of Cholesky Algorithm using Petri Nets},

   author={Wolfmann, Gustavo and De Giusti, Armando},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

580

views

Parallelization of algorithms with hard data dependencies has a lack of task synchronization. Synchronous parallel versions are simple to model and program, but inefficient in terms of scalability and processors use rate. The same problem for or Asynchronous versions with elemental static task scheduling. Efficient Asynchronous algorithms implements out of order execution and are complex to model and execute. In this paper we introduce Petri Nets as a tool that simplifies the modeling and execution of parallel asynchronous versions of these kind of algorithms, while using an efficient dynamic task scheduling implementation. The Cholesky factorization algorithm was used as testbed. Simulations was done as a proof of concept, based on real execution times on GPGPU’s, and shows excellent performances.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474930919
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474930919
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => DsFdDcIpqDifWqlnvJYIxzmWbYI=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1997 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: