9659

GPU-Accelerated Real-Time Visualization and Interaction for Coupled Fluid Dynamics

Florian De Vuyst, Christophe Labourdette, Christian Rey
Centre de Mathematiques et de Leurs Applications (CMLA)
hal-00837555, (22 June 2013)
@unpublished{devuyst:hal-00837555,

   hal_id={hal-00837555},

   url={http://hal.archives-ouvertes.fr/hal-00837555},

   title={GPU-accelerated real-time visualization and interaction for coupled Fluid Dynamics},

   author={De Vuyst, Florian and Labourdette, Christophe and Rey, Christian},

   keywords={Graphics processing unit; gpu; real time CFD; interaction;},

   language={Anglais},

   affiliation={Centre de Math{‘e}matiques et de Leurs Applications – CMLA , Laboratoire de M{‘e}canique et Technologie – LMT},

   note={Conference paper},

   year={2013},

   month={Jun},

   pdf={http://hal.archives-ouvertes.fr/hal-00837555/PDF/cfm2013-devuyst_symposium_MathMeca.pdf}

}

Download Download (PDF)   View View   Source Source   

499

views

For real-time applications (dynamic data-driven applications systems like computer-assisted surgery, command and control, etc.), it is necessary to design fast or strongly-accelerated computational approaches. Reduced-order modeling (ROM) is a candidate methodology that summarizes all the parameter-dependent PDE solutions into an easy-to-compute condensed form. ROM usually requires an offline learning process that returns the essential components of the solutions. However, it is known that ROM methodology is not suitable for all problems, especially problems with a large Kolmogorov $n$-width, like for example dynamical problems involving a continuous multiscale spectrum (like turbulence). In this case, direct simulation is needed and one has to find acceleration strategies. Graphics Processing units (GPU) are a cheap but relevant way to parallelize computations on thousands of cores leading to speedups of order 200 for some algorithms. This paper talks about real-time CFD computations allowing for real time visualization and flow interaction.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

TwitterAPIExchange Object
(
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
        (
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1474814628
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1474814628
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => vbHjndxf9ixhH76J6XX7k/9ZqJo=
        )

    [url] => https://api.twitter.com/1.1/users/show.json
)
Follow us on Facebook
Follow us on Twitter

HGPU group

1996 peoples are following HGPU @twitter

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: