Numerical simulations of acoustic waves with the graphic acceleration GAMER code

K. Murawski, K. Murawski Jr., H.-Y. Schive
Faculty of Physics, Mathematics and Informatics, University of Maria Curie-Sklodowska, 1 M. Curie-Sklodowskiej Sq., 20-031 Lublin, Poland
Bulletin of the Polish Academy of Sciences, Technical Sciences, Vol. 60, No. 4, 2012


   title={Numerical simulations of acoustic waves with the graphic acceleration GAMER code},

   author={Murawski, K and Schive, H-Y},

   journal={Bulletin of the Polish Academy of Sciences: Technical Sciences},






Download Download (PDF)   View View   Source Source   



We present results of numerical simulations of acoustic waves with the use of the Graphics Processing Unit (GPU) acceleration GAMER code which implements a second-order Godunov-type numerical scheme and adaptive mesh refinement (AMR). The AMR implementation is based on constructing a hierarchy of grid patches with an octree data structure. In this code a hybrid model is adopted, in which the time-consuming solvers are dealt with GPUs and the complex AMR data structure is manipulated by Central Processing Units (CPUs). The code is highly parallelized with the Hilbert space-filling curve method. These implementations allow us to resolve well desperate spatial scales that are associated with acoustic waves. We show that a localized velocity (gas pressure) pulse that is initially launched within a uniform and still medium triggers acoustic waves simultaneously with a vortex (an entropy mode). In a flowing medium, acoustic waves experience amplitude growth or decay, a scenario which depends on a location of the flow and relative direction of wave propagation. The amplitude growth results from instabilities which are associated with negative energy waves.
No votes yet.
Please wait...

* * *

* * *

Featured events

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: