Accelerating Text Mining Workloads in a MapReduce-based Distributed GPU Environment

Peter Wittek, Sandor Daranyi
Swedish School of Library and Information Science, University of Boras, Boras, Sweden
Journal of Parallel and Distributed Computing, Volume 73, Issue 2, Pages 198-206, 2013


   title={Accelerating text mining workloads in a MapReduce-based distributed GPU environment},

   author={Wittek, Peter and Dar{‘a}nyi, S{‘a}ndor},

   journal={Journal of Parallel and Distributed Computing},




Scientific computations have been using GPU-enabled computers successfully, often relying on distributed nodes to overcome the limitations of device memory. Only a handful of text mining applications benefit from such infrastructure. Since the initial steps of text mining are typically data intensive, and the ease of deployment of algorithms is an important factor in developing advanced applications, we introduce a flexible, distributed, MapReduce-based text mining workflow that performs I/O-bound operations on CPUs with industry-standard tools and then runs compute-bound operations on GPUs which are optimized to ensure coalesced memory access and effective use of shared memory. We have performed extensive tests of our algorithms on a cluster of eight nodes with two NVidia Tesla M2050s attached to each, and we achieve considerable speedups for random projection and self-organizing maps.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2021 hgpu.org

All rights belong to the respective authors

Contact us: