Early Experiences in Running Many-Task Computing Workloads on GPGPUs

Scott J. Krieder, Benjamin Grimmer, Ioan Raicu
Department of Computer Science, Illinois Institute of Technology
XSEDE, 2012


   title={Early experiences in running many-task computing workloads on gpgpus},

   author={Krieder, Scott J and Grimmer, Benjamin and Raicu, Ioan},

   journal={XSEDE Poster Session},



Download Download (PDF)   View View   Source Source   



This work aims to enable Swift to efficiently use accelerators (such as NVIDIA GPUs) to further accelerate a wide range of applications. This work presents preliminary results in the costs associated with managing and launching concurrent kernels on NVIDIA Kepler GPUs. We expect our results to be applicable to several XSEDE resources, such as Forge, Keeneland, and Lonestar, where currently Swift can only use the general processors to execute workloads and the GPUs are left idle.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2021 hgpu.org

All rights belong to the respective authors

Contact us: