12141

GPU vs FPGA: A Comparative Analysis for Non-standard Precision

Umar Ibrahim Minhas, Samuel Bayliss, George A. Constantinides
Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ
Imperial College London, 2014
BibTeX

Download Download (PDF)   View View   Source Source   

3501

views

FPGAs and GPUs are increasingly used in a range of high performance computing applications. When implementing numerical algorithms on either platform, we can choose to represent operands with different levels of accuracy. A trade-off exists between the numerical accuracy of arithmetic operators and the resources needed to implement them. Where algorithmic requirements for numerical stability are captured in a design description, this trade-off can be exploited to optimize performance by using high-accuracy operators only where they are most required. Support for half and double-double floating point representations allows additional flexibility to achieve this. The aim of this work is to study the language and hardware support, and the achievable peak performance for non-standard precisions on a GPU and an FPGA. A compute intensive program, matrix-matrix multiply, is selected as a benchmark and implemented for various different matrix sizes. The results show that for large-enough matrices, GPUs out-perform FPGA-based implementations but for some smaller matrix sizes, specialized FPGA floating-point operators for half and double-double precision can deliver higher throughput than implementation on a GPU.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org