MPI within a GPU
The Graduate School, University of Kentucky
University of Kentucky, 2009
@article{young2009mpi,
title={MPI WITHIN A GPU},
author={Young, B.D.},
year={2009},
publisher={University of Kentucky}
}
GPUs offer high-performance floating-point computation at commodity prices, but their usage is hindered by programming models which expose the user to irregularities in the current shared-memory environments and require learning new interfaces and semantics. This thesis will demonstrate that the message-passing paradigm can be conceptually cleaner than the current data-parallel models for programming GPUs because it can hide the quirks of current GPU shared-memory environments, as well as GPU-specific features, behind a well-established and well-understood interface. This will be shown by demonstrating a proof-of-concept MPI implementation which provides cleaner, simpler code with a reasonable performance cost. This thesis will also demonstrate that, although there is a virtualization constraint imposed by MPI, this constraint is harmless as long as the virtualization was already chosen to be optimal in terms of a strong execution model and nearly-optimal execution time. This will be demonstrated by examining execution times with varying virtualization using a computationally-expensive micro-kernel.
November 5, 2010 by hgpu