1378

Rank k Cholesky Up/Down-dating on the GPU: gpucholmodV0.2

Christian Walder
Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800
arXiv:1011.1173 [cs.DC] (4 Nov 2010)

@article{2010arXiv1011.1173W,

   author={Walder}, C.},

   title={“{Rank k Cholesky Up/Down-dating on the GPU: gpucholmodV0.2}”},

   journal={ArXiv e-prints},

   archivePrefix={“arXiv”},

   eprint={1011.1173},

   primaryClass={“cs.DC”},

   keywords={Computer Science – Distributed, Parallel, and Cluster Computing, G.1.0},

   year={2010},

   month={nov},

   adsurl={http://adsabs.harvard.edu/abs/2010arXiv1011.1173W},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

466

views

In this note we briefly describe our Cholesky modification algorithm for streaming multiprocessor architectures. Our implementation is available in C++ with Matlab binding, using CUDA to utilise the graphics processing unit (GPU). Limited speed ups are possible due to the bandwidth bound nature of the problem. Furthermore, a complex dependency pattern must be obeyed, requiring multiple kernels to be launched. Nonetheless, this makes for an interesting problem, and our approach can reduce the computation time by a factor of around 7 for matrices of size 5000 by 5000 and k=16, in comparison with the LINPACK suite running on a CPU of comparable vintage. Much larger problems can be handled however due to the O(n) scaling in required GPU memory of our method.
No votes yet.
Please wait...

Recent source codes

* * *

* * *

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: