14168

Toward GPU Accelerated Data Stream Processing

Marcus Pinnecke, David Broneske, Gunter Saake
Institute for Technical and Business Information Systems, University of Magdeburg, Germany
27th GI-Workshop on Foundations of Databases, 2015
BibTeX

Download Download (PDF)   View View   Source Source   

1840

views

In recent years, the need for continuous processing and analysis of data streams has increased rapidly. To achieve high throughput-rates, stream-applications make use of operator-parallelization, batching-strategies and distribution. Another possibility is to utilize co-processors capabilities per operator. Further, the database community noticed, that a column-oriented architecture is essential for efficient co-processing, since the data transfer overhead is smaller compared to transferring whole tables. However, current systems still rely on a row-wise architecture for stream processing, because it requires data structures for high velocity. In contrast, stream portions are in rest while being bound to a window. With this, we are able to alter the per-window event representation from row to column orientation, which will enable us to exploit GPU acceleration. To provide general-purpose GPU capabilities for stream processing, the varying window sizes lead to challenges. Since very large windows cannot be passed directly to the GPU, we propose to split the variable-length windows into fixed-sized window portions. Further, each such portion has a column-oriented event representation. In this paper, we present a time and space efficient, data corruption free concept for this task. Finally, we identify open research challenges related to co-processing in the context of stream processing.
No votes yet.
Please wait...

Recent source codes

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org