14409

Optimizing strassen matrix multiply on GPUs

Ayaz ul Hasan Khan, Mayez Al-Mouhamed, Allam Fatayer
Department of Computer Engineering, College of Computer Science & Engineering, KFUPM, Dhahran, 31261, Saudi Arabia
16th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), 2015
BibTeX

Download Download (PDF)   View View   Source Source   

2271

views

Many core systems are basically designed for applications having large data parallelism. Strassen Matrix Multiply (MM) can be formulated as a depth first (DFS) traversal of a recursion tree where all cores work in parallel on computing each of the NxN sub-matrices that reduces storage at the detriment of large data motion to gather and aggregate the results. We propose Strassen and Winograd algorithms (S-MM and W-MM) based on three optimizations: a set of basic algebra functions to reduce overhead, invoking efficient library (CUBLAS 5.5), and parameter-tuning of parametric kernel to improve resource occupancy. On GPUs, W-MM and S-MM with one recursion level outperform CUBLAS 5.5 Library with up to twice as faster for large arrays satisfying N>=2048 and N>=3072, respectively. Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between 20x to 80x for the above arrays. The proposed approach can be used to enhance the performance of CUBLAS and MKL libraries.
Rating: 2.5/5. From 1 vote.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org