14529

Contributions to the Efficient Use of General Purpose Coprocessors: Kernel Density Estimation as Case Study

Unai Lopez Novoa
Department of Computer Architecture and Technology, University of the Basque Country
University of the Basque Country, 2015
BibTeX

Download Download (PDF)   View View   Source Source   

1632

views

The high performance computing landscape is shifting from assemblies of homogeneous nodes towards heterogeneous systems, in which nodes consist of a combination of traditional out-oforder execution cores and accelerator devices. Accelerators, built around GPUs, many-core chips, or FPGAs, are used to offload compute-intensive tasks. These devices provide superior theoretical performance compared to traditional multi-core CPUs, but not every application fits into the programming model they impose, and exploiting their computing power remains a challenging task. This dissertation discusses the issues that arise when trying to efficiently use general purpose accelerators. As a contribution to aid in this task, we present a thorough survey of performance modeling techniques and tools for general purpose coprocessors. Then we use as case study the statistical technique Kernel Density Estimation (KDE). KDE is a memory bound application that poses several challenges for its adaptation to the accelerator-based model. We present a novel algorithm for the computation of KDE that reduces considerably its computational complexity, called S-KDE. Furthermore, we have carried out two parallel implementations of S-KDE, one for multi and many-core processors, and another one for accelerators. The latter has been implemented in OpenCL in order to make it portable across a wide range of devices. We have evaluated the performance of each implementation of S-KDE in a variety of architectures, trying to highlight the bottlenecks and the limits that the code reaches in each device. Finally, we present an application of our S-KDE algorithm in the field of climatology: a novel methodology for the evaluation of environmental models.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org