14622

Brute-Force k-Nearest Neighbors Search on the GPU

Shengren Li, Nina Amenta
University of California, Davis
Similarity Search and Applications, 2015
BibTeX

Download Download (PDF)   View View   Source Source   

3677

views

We present a brute-force approach for finding k-nearest neighbors on the GPU for many queries in parallel. Our program takes advantage of recent advances in fundamental GPU computing primitives. We modify a matrix multiplication subroutine in MAGMA library [6] to calculate the squared Euclidean distances between queries and references. The nearest neighbors selection is accomplished by a truncated merge sort built on top of sorting and merging functions in the Modern GPU library [3]. Compared to state-of-the-art approaches, our program is faster and it handles larger inputs. For instance, we can find 1000 nearest neighbors among 1 million 64-dimensional reference points at a rate of about 435 queries per second.
Rating: 2.5/5. From 3 votes.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org