14777

Approximation of BEM matrices using GPGPUs

Steffen Borm, Sven Christophersen
Universitat Kiel
arXiv:1510.07244 [cs.MS], (25 Oct 2015)
BibTeX

Download Download (PDF)   View View   Source Source   

2193

views

The efficiency of boundary element methods depends crucially on the time required for setting up the stiffness matrix. The far-field part of the matrix can be approximated by compression schemes like the fast multipole method or $mathcal{H}$-matrix techniques. The near-field part is typically approximated by special quadrature rules like the Sauter-Schwab technique that can handle the singular integrals appearing in the diagonal and near-diagonal matrix elements. Since computing one element of the matrix requires only a small amount of data but a fairly large number of operations, we propose to use GPUs to handle vectorizable portions of the computation: near-field computations are ideally suited for vectorization and can therefore be handled very well by GPUs. Modern far-field compression schemes can be split into a small adaptive portion that exhibits divergent control flows and is handled by the CPU and a vectorizable portion that can again be sent to GPUs. We propose a hybrid algorithm that splits the computation into tasks for CPUs and GPUs. Our method presented in this article is able to speedup the setup time of boundary integral operators by a significant factor of 19-30 for both the Laplace and the Helmholtz equation in 3D when using two consumer GPGPUs compared to a quad-core CPU.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org