17424

Bifrost: a Python/C++ Framework for High-Throughput Stream Processing in Astronomy

Miles D. Cranmer, Benjamin R. Barsdell, Danny C. Price, Jayce Dowell, Hugh Garsden, Veronica Dike, Tarraneh Eftekhari, Alexander M. Hegedus, Joseph Malins, Kenneth S. Obenberger, Frank Schinzel, Kevin Stovall, Gregory B. Taylor, Lincoln J. Greenhill
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
arXiv:1708.00720 [astro-ph.IM], (2 Aug 2017)

@article{cranmer2017bifrost,

   title={Bifrost: a Python/C++ Framework for High-Throughput Stream Processing in Astronomy},

   author={Cranmer, Miles D. and Barsdell, Benjamin R. and Price, Danny C. and Dowell, Jayce and Garsden, Hugh and Dike, Veronica and Eftekhari, Tarraneh and Hegedus, Alexander M. and Malins, Joseph and Obenberger, Kenneth S. and Schinzel, Frank and Stovall, Kevin and Taylor, Gregory B. and Greenhill, Lincoln J.},

   year={2017},

   month={aug},

   archivePrefix={"arXiv"},

   primaryClass={astro-ph.IM}

}

Radio astronomy observatories with high throughput back end instruments require real-time data processing. While computing hardware continues to advance rapidly, development of real-time processing pipelines remains difficult and time-consuming, which can limit scientific productivity. Motivated by this, we have developed Bifrost: an open-source software framework for rapid pipeline development. Bifrost combines a high-level Python interface with highly efficient reconfigurable data transport and a library of computing blocks for CPU and GPU processing. The framework is generalizable, but initially it emphasizes the needs of high-throughput radio astronomy pipelines, such as the ability to process data buffers as if they were continuous streams, the capacity to partition processing into distinct data sequences (e.g., separate observations), and the ability to extract specific intervals from buffered data. Computing blocks in the library are designed for applications such as interferometry, pulsar dedispersion and timing, and transient search pipelines. We describe the design and implementation of the Bifrost framework and demonstrate its use as the backbone in the correlation and beamforming back end of the Long Wavelength Array station in the Sevilleta National Wildlife Refuge, NM.
Rating: 3.0/5. From 2 votes.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: