2055

Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures

Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid Oliker, David Patterson, John Shalf, Katherine Yelick
CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing (2008), pp. 1-12

@conference{datta2009stencil,

   title={Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures},

   author={Datta, K. and Murphy, M. and Volkov, V. and Williams, S. and Carter, J. and Oliker, L. and Patterson, D. and Shalf, J. and Yelick, K.},

   booktitle={High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. International Conference for},

   pages={1–12},

   year={2009},

   organization={IEEE}

}

Download Download (PDF)   View View   Source Source   

1508

views

Understanding the most efficient design and utilization of emerging multicore systems is one of the most challenging questions faced by the mainstream and scientific computing industries in several decades. Our work explores multicore stencil (nearest-neighbor) computations — a class of algorithms at the heart of many structured grid codes, including PDF solvers. We develop a number of effective optimization strategies, and build an auto-tuning environment that searches over our optimizations and their parameters to minimize runtime, while maximizing performance portability. To evaluate the effectiveness of these strategies we explore the broadest set of multicore architectures in the current HPC literature, including the Intel Clovertown, AMD Barcelona, Sun Victoria Falls, IBM QS22 PowerXCell 8i, and NVIDIA GTX280. Overall, our auto-tuning optimization methodology results in the fastest multicore stencil performance to date. Finally, we present several key insights into the architectural tradeoffs of emerging multicore designs and their implications on scientific algorithm development.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: