27302

An OpenCL-Based FPGA Accelerator for Faster R-CNN

Jianjing An, Dezheng Zhang, Ke Xu, Dong Wang
Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China
Entropy, Volume 24, Issue 10, 2022
BibTeX

In recent years, convolutional neural network (CNN)-based object detection algorithms have made breakthroughs, and much of the research corresponds to hardware accelerator designs. Although many previous works have proposed efficient FPGA designs for one-stage detectors such as Yolo, there are still few accelerator designs for faster regions with CNN features (Faster R-CNN) algorithms. Moreover, CNN’s inherently high computational complexity and high memory complexity bring challenges to the design of efficient accelerators. This paper proposes a software-hardware co-design scheme based on OpenCL to implement a Faster R-CNN object detection algorithm on FPGA. First, we design an efficient, deep pipelined FPGA hardware accelerator that can implement Faster R-CNN algorithms for different backbone networks. Then, an optimized hardware-aware software algorithm was proposed, including fixed-point quantization, layer fusion, and a multi-batch Regions of interest (RoIs) detector. Finally, we present an end-to-end design space exploration scheme to comprehensively evaluate the performance and resource utilization of the proposed accelerator. Experimental results show that the proposed design achieves a peak throughput of 846.9 GOP/s at the working frequency of 172 MHz. Compared with the state-of-the-art Faster R-CNN accelerator and the one-stage YOLO accelerator, our method achieves 10× and 2.1× inference throughput improvements, respectively.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org