2879

Automatically Tuned Dense Linear Algebra for Multicore+GPU

Xing Fu, Xue Li, Gregory D. Peterson
Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville
Symposium on Application Accelerators in High Performance Computing, 2010
BibTeX

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

1539

views

The Multicore+GPU architecture has been adopted in some of the fastest supercomputers listed on the TOP500. The MAGMA project aims to develop a dense linear algebra library similar to LAPACK but for heterogeneous/hybrid architectures processors like Multicore+GPU. However, to provide portable performance, manual parameter tuning is required. This paper presents automatically tuned LU factorization. The key parameter of LU factorization is tuned automatically to optimize performance for a particular GPU platform. Moreover, we propose a work stealing scheme and GREEN-synchronization to decrease the power consumption of the LU factorization and accelerate the entire application.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org