2955

Parallel Cloth Simulation Using OpenMP and CUDA

Gillian David Sims
Louisiana State University
Louisiana State University and Agricultural and Mechanical College, 2009

@phdthesis{sims2009parallel,

   title={Parallel Cloth Simulation Using OpenMP and CUDA},

   author={Sims, G.D.},

   year={2009}

}

Download Download (PDF)   View View   Source Source   

1077

views

The widespread availability of parallel computing architectures has lead to research regarding algorithms and techniques that best exploit available parallelism. In addition to the CPU parallelism available; the GPU has emerged as a parallel computational device. The goal of this study was to explore the combined use of CPU and GPU parallelism by developing a hybrid parallel CPU/GPU cloth simulation application. In order to evaluate the benefits of the hybrid approach, the application was first developed in sequential CPU form, followed by a parallel CPU form. The application uses Backward Euler implicit time integration to solve the differential equations of motion associated with the physical system. The Conjugate Gradient (CG) algorithm is used to determine the solution vector for the system of equations formed by the Backward Euler approach. The matrix/vector, vector/vector, and vector/scalar operations required by CG are handled by calls to BLAS level 1 and level 2 functions. In the sequential CPU and parallel CPU versions, the Intel Math Kernel Library implementation of BLAS is used. In the hybrid parallel CPU/GPU version, the Nvidia CUDA based BLAS implementation (CUBLAS) is used. In the parallel CPU and hybrid implementations, OpenMP directives are used to parallelize the force application loop that traverses the list of forces acting on the system. Runtimes were collected for each version of the application while simulating cloth meshes with particle resolutions of 20×20, 40×40, and 60×60. The performance of each version was compared at each mesh resolution. The level of performance degradation experienced when transitioning to the larger mesh sizes was also determined. The hybrid parallel CPU/GPU implementation yielded the highest frame rate for the 40×40 and 60×60 meshes. The parallel CPU implementation yielded the highest frame rate for the 20×20 mesh. The performance of the hybrid parallel CPU/GPU implementation degraded the least as it transitioned to the two larger mesh sizes. The results of this study will potentially lead to further research regarding the use of GPUs to perform the matrix/vector operations associated with the CG algorithm under more complex cloth simulation scenarios.
No votes yet.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: