2974

Achieving a single compute device image in OpenCL for multiple GPUs

Jungwon Kim, Honggyu Kim, Joo H. Lee, Jaejin Lee
Seoul National University, Seoul, South Korea
In Proceedings of the 16th ACM symposium on Principles and practice of parallel programming (2011), pp. 277-288

@conference{kim2011achieving,

   title={Achieving a single compute device image in OpenCL for multiple GPUs},

   author={Kim, J. and Kim, H. and Lee, J.H. and Lee, J.},

   booktitle={Proceedings of the 16th ACM symposium on Principles and practice of parallel programming},

   pages={277–288},

   year={2011},

   organization={ACM}

}

Source Source   

733

views

In this paper, we propose an OpenCL framework that combines multiple GPUs and treats them as a single compute device. Providing a single virtual compute device image to the user makes an OpenCL application written for a single GPU portable to the platform that has multiple GPU devices. It also makes the application exploit full computing power of the multiple GPU devices and the total amount of GPU memories available in the platform. Our OpenCL framework automatically distributes at run-time the OpenCL kernel written for a single GPU into multiple CUDA kernels that execute on the multiple GPU devices. It applies a run-time memory access range analysis to the kernel by performing a sampling run and identifies an optimal workload distribution for the kernel. To achieve a single compute device image, the runtime maintains virtual device memory that is allocated in the main memory. The OpenCL runtime treats the memory as if it were the memory of a single GPU device and keeps it consistent to the memories of the multiple GPU devices. Our OpenCL-C-to-C translator generates the sampling code from the OpenCL kernel code and OpenCL-C-to-CUDA-C translator generates the CUDA kernel code for the distributed OpenCL kernel. We show the effectiveness of our OpenCL framework by implementing the OpenCL runtime and two source-to-source translators. We evaluate its performance with a system that contains 8 GPUs using 11 OpenCL benchmark applications.
No votes yet.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: