4774

Mars: Accelerating MapReduce with Graphics Processors

Wenbin Fang, Bingsheng He, Qiong Luo, N.K. Govindaraju
Univ. of Wisconsin-Madison, Madison, WI, USA
IEEE Transactions on Parallel and Distributed Systems, 2010

@article{fang2010mars,

   title={Mars: Accelerating MapReduce with Graphics Processors},

   author={Fang, W. and He, B. and Luo, Q. and Govindaraju, N.K.},

   journal={IEEE Transactions on Parallel and Distributed Systems},

   year={2010},

   publisher={Published by the IEEE Computer Society}

}

We design and implement Mars, a MapReduce runtime system accelerated with graphics processing units (GPUs). MapReduce is a simple and flexible parallel programming paradigm originally proposed by Google, for the ease of large-scale data processing on thousands of CPUs. Compared with CPUs, GPUs have an order of magnitude higher computation power and memory bandwidth. However, GPUs are designed as special-purpose coprocessors and their programming interfaces are less familiar than those on the CPUs to MapReduce programmers. To harness GPUs’ power for MapReduce, we developed Mars to run on NVIDIA GPUs, AMD GPUs as well as multicore CPUs. Furthermore, we integrated Mars into Hadoop, an open-source CPU-based MapReduce system. Mars hides the programming complexity of GPUs behind the simple and familiar MapReduce interface, and automatically manages task partitioning, data distribution, and parallelization on the processors. We have implemented six representative applications on Mars and evaluated their performance on PCs equipped with GPUs as well as multicore CPUs. The experimental results show that, the GPU-CPU coprocessing of Mars on an NVIDIA GTX280 GPU and an Intel quad-core CPU outperformed Phoenix, the state-of-the-art MapReduce on the multicore CPU with a speedup of up to 72 times and 24 times on average, depending on the applications. Additionally, integrating Mars into Hadoop enabled GPU acceleration for a network of PCs.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: