Using the physics-based rendering toolkit for medical reconstruction
GrUVi-Lab, SFU
IEEE Nuclear Science Symposium Conference Record, 2005
In this paper we cast the problem of tomography in the realm of computer graphics. By using PBRT (physically based rendering toolkit) we create a scripting environment that simplifies the programming of tomography algorithms such as maximum-likelihood expectation maximization (ML-EM) or simultaneous algebraic reconstruction technique (SART, a deviant of ART). This allows the rapid development and testing of novel algorithms with a variety of parameter configurations. Additionally, it takes advantage of speed-up techniques that are common and well-researched in the graphics community, such as multi-resolution techniques based on octrees or similar space-partitioning data structures as well as algorithms accelerated through graphics hardware (GPU). Using our framework, we have evaluated different attenuation correction schemes during the back projection of ML-EM and SART
August 12, 2011 by hgpu