Implementing a Preconditioned Iterative Linear Solver Using Massively Parallel Graphics Processing Units
Department of Electrical and Computer Engineering, University of Toronto
University of Toronto, 2011
@phdthesis{kamiabad2011implementing,
title={Implementing a Preconditioned Iterative Linear Solver Using Massively Parallel Graphics Processing Units},
author={Kamiabad, A.A.},
year={2011},
school={University of Toronto}
}
The research conducted in this thesis provides a robust implementation of a preconditioned iterative linear solver on programmable graphic processing units (GPUs). Solving a large, sparse linear system is the most computationally demanding part of many widely used power system analysis. This thesis presents a detailed study of iterative linear solvers with a focus on Krylov-based methods. Since the ill-conditioned nature of power system matrices typically requires substantial preconditioning to ensure robustness of Krylov-based methods, a polynomial preconditioning technique is also studied in this thesis. Implementation of the Chebyshev polynomial preconditioner and biconjugate gradient solver on a programmable GPU are presented and discussed in detail. Evaluation of the performance of the GPU-based preconditioner and linear solver on a variety of sparse matrices shows significant computational savings relative to a CPU-based implementation of the same preconditioner and commonly used direct methods.
October 22, 2011 by hgpu