5983

Implementing a Preconditioned Iterative Linear Solver Using Massively Parallel Graphics Processing Units

Amirhassan Asgari Kamiabad
Department of Electrical and Computer Engineering, University of Toronto
University of Toronto, 2011
BibTeX

Download Download (PDF)   View View   Source Source   

2125

views

The research conducted in this thesis provides a robust implementation of a preconditioned iterative linear solver on programmable graphic processing units (GPUs). Solving a large, sparse linear system is the most computationally demanding part of many widely used power system analysis. This thesis presents a detailed study of iterative linear solvers with a focus on Krylov-based methods. Since the ill-conditioned nature of power system matrices typically requires substantial preconditioning to ensure robustness of Krylov-based methods, a polynomial preconditioning technique is also studied in this thesis. Implementation of the Chebyshev polynomial preconditioner and biconjugate gradient solver on a programmable GPU are presented and discussed in detail. Evaluation of the performance of the GPU-based preconditioner and linear solver on a variety of sparse matrices shows significant computational savings relative to a CPU-based implementation of the same preconditioner and commonly used direct methods.
Rating: 1.5/5. From 2 votes.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org