7736

GPUSync: Architecture-Aware Management of GPUs for Predictable Multi-GPU Real-Time Systems

Glenn A. Elliott, Bryan C. Ward, James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill
University of North Carolina at Chapel Hill, 2012
BibTeX

Download Download (PDF)   View View   Source Source   Source codes Source codes

1790

views

The integration of graphics processing units (GPUs) into real-time systems has recently become an active area of research. However, prior research on this topic has failed to produce real-time GPU allocation methods that fully exploit the available parallelism in GPU-enabled systems. In this paper, a GPU management framework called GPUSync is described that was designed with the goal of increasing parallelism in mind. GPUSync can be applied in multi-GPU real-time systems, is cognizant of the system bus architecture and affinity among computational tasks and GPUs, and fully exposes the parallelism offered by modern GPUs, even when closed-source GPU drivers are used. In empirical evaluations presented herein involving real-world applications, GPUSync improved real-time response times by three times or more, on average, making previously unschedulable workloads schedulable.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org