8906

Enabling Inter-Machine Parallelism in High-Level Languages with SEJITS and MapReduce

Michael Driscoll, Evangelos Georganas, Penporn Koanantakool
Computer Science Division, University of California, Berkeley
University of California, 2012
BibTeX

Download Download (PDF)   View View   Source Source   

2108

views

Selective, embedded, just-in-time specialization (SEJITS) is a technique for optimizing embedded domain-specific languages through the use of specializers, or code modules developed by expert programmers that target particular accelerators such as multicore processors and GPUs via just-in-time compilation. We extend SEJITS to exploit inter-machine parallelism by targeting clusters of machines via MapReduce. Our work enables the development of specializers for large, data-parallel applications whose work flows can be cast as MapReduce operations. We present an implementation that targets Hadoop and we describe specializers for two applications. The first, a pure-Python protein docking application, requires a 1-line change to realize a 280x speedup on a cluster with 450 cores. The second, an audio processing application, demonstrates our approach’s ability to leverage clusters of GPU-equipped machines by composing parallel programming patterns. Results indicate that clusters are viable targets for specialization, and that pattern composition is a useful technique for managing multi-level parallelism.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org