hgpu.org » HEP
Peter A Boyle
Tags: Algorithms, Computational Physics, CUDA, HEP, High Energy Physics - Lattice, Intel Xeon Phi, nVidia, Physics, QCD, Review
February 7, 2017 by hgpu
G. Amadio, A. Ananya, J. Apostolakis, A. Arora, M. Bandieramonte, A. Bhattacharyya, C. Bianchini, R. Brun, P. Canal, F. Carminati, L. Duhem, D. Elvira, A. Gheata, M. Gheata, I. Goulas, R. Iope, S. Jun, G. Lima, A. Mohanty, T. Nikitina, M. Novak, W. Pokorski, A. Ribon, R. Sehgal, O. Shadura, S. Vallecorsa, S. Wenzel, Y. Zhang
December 3, 2016 by hgpu
Pushan Majumdar
Tags: CUDA, HEP, High Energy Physics - Lattice, nVidia, OpenACC, Physics, QCD, Tesla X2090
November 19, 2016 by hgpu
Recent source codes
* * *
Most viewed papers (last 30 days)
- Performance Portable Gradient Computations Using Source Transformation
- ConTraPh: Contrastive Learning for Parallelization and Performance Optimization
- Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
- Understanding the Landscape of Ampere GPU Memory Errors
- Geak: Introducing Triton Kernel AI Agent & Evaluation Benchmarks
- SIGMo: High-Throughput Batched Subgraph Isomorphism on GPUs for Molecular Matching
- GBOTuner: Autotuning of OpenMP Parallel Codes with Bayesian Optimization and Code Representation Transfer Learning
- DGEMM without FP64 Arithmetic - using FP64 Emulation and FP8 Tensor Cores with Ozaki Scheme
- Luthier: Bridging Auto-Tuning and Vendor Libraries for Efficient Deep Learning Inference
- OpenDwarfs 2025: Modernizing the OpenDwarfs Benchmark Suite for Heterogeneous Computing
* * *