hgpu.org » HEP
Peter A Boyle
Tags: Algorithms, Computational Physics, CUDA, HEP, High Energy Physics - Lattice, Intel Xeon Phi, nVidia, Physics, QCD, Review
February 7, 2017 by hgpu
G. Amadio, A. Ananya, J. Apostolakis, A. Arora, M. Bandieramonte, A. Bhattacharyya, C. Bianchini, R. Brun, P. Canal, F. Carminati, L. Duhem, D. Elvira, A. Gheata, M. Gheata, I. Goulas, R. Iope, S. Jun, G. Lima, A. Mohanty, T. Nikitina, M. Novak, W. Pokorski, A. Ribon, R. Sehgal, O. Shadura, S. Vallecorsa, S. Wenzel, Y. Zhang
December 3, 2016 by hgpu
Pushan Majumdar
Tags: CUDA, HEP, High Energy Physics - Lattice, nVidia, OpenACC, Physics, QCD, Tesla X2090
November 19, 2016 by hgpu
Recent source codes
* * *
Most viewed papers (last 30 days)
- Acceleration as a Service (XaaS) Source Containers
- Omniwise: Predicting GPU Kernels Performance with LLMs
- Exploring SYCL as a Portability Layer for High-Performance Computing on CPUs
- All You Need Is Binary Search! A Practical View on Lightweight Database Indexing on GPUs
- CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
- Engineering Supercomputing Platforms for Biomolecular Applications
- GCStack+GCScaler: Fast and Accurate GPU Performance Analyses Using Fine-Grained Stall Cycle Accounting and Interval Analysis
- P4OMP: Retrieval-Augmented Prompting for OpenMP Parallelism in Serial Code
- chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
- A First Look at Bugs in LLM Inference Engines
* * *