Ray Tracing in the Cloud using MapReduce

Lesley Northam, Khuzaima Daudjee, Rob Smits, Joe Istead
University of Waterloo
University of Waterloo, 2013

   title={Ray Tracing in the Cloud using MapReduce},

   author={Northam, Lesley and Daudjee, Khuzaima and Smits, Rob and Istead, Joe},



Download Download (PDF)   View View   Source Source   



We present the Hadoop Online Ray Tracer (HORT), a scalable ray tracing framework for general, pay-as-you-go, cloud computing services. Using MapReduce, HORT partitions the computational workload and scene data differently than other distributed memory ray tracing frameworks. We show that this unique partitioning significantly bounds the data replication costs and inter-process communication. Consequently HORT is fault-tolerant and cost-effective when rendering large-scale scenes (i.e., scenes that do not fit into local memory) without specific or dedicated high performance infrastructure. Our experiments demonstrate this scalability and fault tolerance using several CPU and GPU instances on Amazon AWS with the Hadoop open-source implementation of MapReduce.
VN:F [1.9.22_1171]
Rating: 5.0/5 (1 vote cast)
Ray Tracing in the Cloud using MapReduce, 5.0 out of 5 based on 1 rating

* * *

* * *

Follow us on Twitter

HGPU group

1655 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

334 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: