10386

Influence of InfiniBand FDR on the Performance of Remote GPU Virtualization

C. Reano, R. Mayo, and E. S. Quintana-Orti, F. Silla and J. Duato, A. J. Pena
Universitat Jaume I, Castellon, Spain 12071
IEEE Cluster, 2013
@article{reano2013influence,

   title={Influence of InfiniBand FDR on the Performance of Remote GPU Virtualization},

   author={Reano, C and Mayo, R and Quintana-Ort{i}, ES and Silla, F and Duato, J and Pena, AJ},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

453

views

The use of GPUs to accelerate general-purpose scientific and engineering applications is mainstream today, but their adoption in current high-performance computing clusters is impaired primarily by acquisition costs and power consumption. Therefore, the benefits of sharing a reduced number of GPUs among all the nodes of a cluster can be remarkable for many applications. This approach, usually referred to as remote GPU virtualization, aims at reducing the number of GPUs present in a cluster, while increasing their utilization rate. The performance of the interconnection network is key to achieving reasonable performance results by means of remote GPU virtualization. To this end, several networking technologies with throughput comparable to that of PCI Express have appeared recently. In this paper we analyze the influence of InfiniBand FDR on the performance of remote GPU virtualization, comparing its impact on a variety of GPU-accelerated applications with other networking technologies, such as Infini-Band QDR and Gigabit Ethernet. Given the severe limitations of freely available remote GPU virtualization solutions, the rCUDA framework is used as the case study for this analysis. Results show that the new FDR interconnect, featuring higher bandwidth than its predecessors, allows the reduction of the overhead of using GPUs remotely, thus making this approach even more appealing.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

142 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1223 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: