Evaluating the Viability of Application-Driven Cooperative CPU/GPU Fault Detection

Dong Li, Seyong Lee, Jeffrey S. Vetter
Oak Ridge National Laboratory, Oak Ridge, TN
Workshop on Resiliency in High Performance Computing, 2013

   title={Evaluating the Viability of Application-Driven Cooperative CPU/GPU Fault Detection},

   author={Li, Dong and Lee, Seyong and Vetter, Jeffrey S.},



Download Download (PDF)   View View   Source Source   



Trends in high performance computing are bringing increased heterogeneity among the computational resources within a single machine. The heterogeneous CPU/GPU platforms, however, exacerbate resilience problems faced by current large-scale systems. How to design efficient resilience strategies is critical for the wider adoption of heterogeneous platforms for future exascale systems. The conventional resilience strategy for GPU brings significant performance and power overhead, because they employ a one-size-fits-all approach to enforce uniform data protection. In addition, the isolation between CPU and GPU protection loses potential optimization opportunities provided by the heterogeneous CPU/GPU platforms. In this paper, we explore the viability of using an application-driven CPU/GPU cooperative method to detect faults occurred on GPU global memory. By selectively protecting application-critical data and leveraging time and space redundancy in CPU to detect faults, we bring only 2.2% performance overhead while capturing more than 90% errors that cause incorrect application results.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Follow us on Twitter

HGPU group

1666 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: