10851

DynaProg for Scala: A Scala DSL for Dynamic Programming on CPU and GPU

Thierry Coppey
Programming Methods Laboratory, LAMP, EPFL
EPFL, 2013
@techreport{odersky2013dynaprog,

   title={DynaProg for Scala},

   author={Odersky, Martin and Coppey, Thierry and others},

   year={2013}

}

Download Download (PDF)   View View   Source Source   Source codes Source codes

Package:

967

views

Dynamic programming is an algorithmic technique to solve problems that follow the Bellman’s principle: optimal solutions depends on optimal sub-problem solutions. The core idea behind dynamic programming is to memoize intermediate results into matrices to avoid multiple computations. Solving a dynamic programming problem consists of two phases: filling one or more matrices with intermediate solutions for sub-problems and recomposing how the final result was constructed (backtracking). In textbooks, problems are usually described in terms of recurrence relations between matrices elements. Expressing dynamic programming problems in terms of recursive formulae involving matrix indices might be difficult, if often error prone, and the notation does not capture the essence of the underlying problem (for example aligning two sequences). Moreover, writing correct and efficient parallel implementation requires different competencies and often a significant amount of time. In this project, we present DynaProg, a language embedded in Scala (DSL) to address dynamic programming problems on heterogeneous platforms. DynaProg allows the programmer to write concise programs based on ADP [1], using a pair of parsing grammar and algebra; these program can then be executed either on CPU or on GPU. We evaluate the performance of our implementation against existing work and our own hand-optimized baseline implementations for both the CPU and GPU versions. Experimental results show that plain Scala has a large overhead and is recommended to be used with small sequences (<=1024) whereas the generated GPU version is comparable with existing implementations: matrix chain multiplication has the same performance as our hand-optimized version (142% of the execution time of [2]) for a sequence of 4096 matrices, Smith-Waterman is twice slower than [3] on a pair of sequences of 6144 elements, and RNA folding is on par with [4] (95% running time) for sequences of 4096 elements.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1193 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: