3122

Dynamically tuned push-relabel algorithm for the maximum flow problem on CPU-GPU-Hybrid platforms

Zhengyu He, Bo Hong
School of Electrical and Computer Engineering, Georgia Institute of Technology
IEEE International Symposium on Parallel & Distributed Processing (IPDPS), 2010
@conference{he2010dynamically,

   title={Dynamically tuned push-relabel algorithm for the maximum flow problem on CPU-GPU-Hybrid platforms},

   author={He, Z. and Hong, B.},

   booktitle={Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on},

   pages={1–10},

   issn={1530-2075},

   year={2010},

   organization={IEEE}

}

Download Download (PDF)   View View   Source Source   

360

views

The maximum flow problem is a fundamental graph theory problem with many important applications. Max-flow algorithms based on the push-relabel method are known to have better complexity bound and faster practical execution speed than others. However, existing push-relabel algorithms are designed for uniprocessors or parallel processors that support locking primitives, thus making it very difficult to apply the push-relabel technique to CUDA-based GPUs. In this paper, we present a first generic parallel push-relabel algorithm for CUDA devices. We model the parallelization efficiency of the algorithm, which reveals that, for a given input graph, the level of parallelism varies during the execution of the algorithm. To maximize the execution efficiency, we develop a dynamically tuned algorithm that utilizes both CPU and GPU by adaptively switching between the two computing units during run time. We show that algorithm finds the maximum flow with O(|V|^2|E|) operations (summed over both the CPU and the GPU). Extensive experimental results show that the new algorithm is up to 2 times faster than the push-relabel algorithm by Goldberg et al.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1311 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: